ME 7247: Advanced Control Systems

Fall 2022-23

Lecture 3: Least norm optimization

Friday September 16, 2022

Lecturer: Laurent Lessard Scribe: Laurent Lessard

Least norm estimation, optimality conditions, trade-offs and regularization, geometrical intuition,

1 Least norm optimization

Consider the equation Ax = b with $A \in \mathbb{R}^{m \times n}$. This time, imagine we have m < n (A is a wide matrix), and we are in the *control* setup; there are infinitely many x satisfying Ax = b, so we want to find the "best" x among all solutions.

In the least norm problem, as the name suggests, we will seek the solution to Ax = b for which ||x|| is as small as possible. In optimization notation, the problem is to

$$\begin{array}{ll}
\text{minimize} & ||x||^2 \\
\text{such that} & Ax = b
\end{array} \tag{1}$$

Here, Ax = b is a constraint, and we write it beneath the objective function ||x||.

1.1 Geometric intuition

The set of all solutions to Ax = b is the set $X := \{x_p + v \mid v \in \text{null}(A)\}$, where x_p is any point satisfying $Ax_p = b$. We can write this simply as $X = x_p + \text{null}(A)$. The set X is generally not a subspace, because it does not include 0. Rather, it is an affine space; which is a shifted subspace. Instead of passing through the origin, the set X passes through the point x_p . We can visualize all points in this space as in Fig. 1. Important note: when we drew a picture for least squares, we visualized the output space \mathbb{R}^m , in which range(A) is a subspace. Here, we visualize, the input space \mathbb{R}^n , in which null(A) is a subspace.

Figure 1: Geometric intuition for minimizing ||x|| subject to Ax = b: we are looking for the point in $\hat{x} + \text{null}(A)$ that is closest to 0. This happens when $\hat{x} \in \text{null}(A)^{\perp}$.

In Fig. 1, we see that among all points in the solution set $x_p + \text{null}(A)$, there is a point \hat{x} that has minimum norm, which means it is closest to the origin. This means that \hat{x} should be orthogonal to all vectors in null(A), so $\hat{x} \in \text{null}(A)^{\perp}$.

We can also prove the converse; that if we have any vector $\hat{x} \in \text{null}(A)^{\perp}$, then it must be optimal. To see why, let x be any other feasible point, i.e. a point that satisfies Ax = b. Now write:

$$||x||^{2} = ||x - \hat{x} + \hat{x}||^{2}$$

$$= ||\hat{x}||^{2} + ||x - \hat{x}||^{2} + 2\langle \hat{x}, x - \hat{x} \rangle$$

$$= ||\hat{x}||^{2} + ||x - \hat{x}||^{2}$$

$$\geq ||\hat{x}||^{2}$$

In the third line, we used the fact that $\langle \hat{x}, x - \hat{x} \rangle = 0$. This follows from the fact that x and \hat{x} are both solutions to Ax = b. Therefore, we have: $A(x - \hat{x}) = Ax - A\hat{x} = b - b = 0$. So $x - \hat{x} \in \text{null}(A)$. By assumption, $\hat{x} \in \text{null}(A)^{\perp}$, so $\langle \hat{x}, x - \hat{x} \rangle = 0$. This proves that \hat{x} is an optimal point if and only if $\hat{x} \in \text{null}(A)^{\perp}$.

1.2 Algebraic solution

To proceed further, we need two useful facts.

Lemma 1.1. Suppose $A \in \mathbb{R}^{m \times n}$. Then range $(A)^{\perp} = \text{null}(A^{\mathsf{T}})$.

Proof. Pick any $z \in \text{null}(A^{\mathsf{T}})$ and $y \in \text{range}(A)$. Then y = Ax for some $x \in \mathbb{R}^n$. Now calculate: $\langle z, y \rangle = \langle z, Ax \rangle = \langle A^{\mathsf{T}}z, x \rangle = 0$. We just showed that $\langle z, y \rangle$ for all $y \in \text{range}(A)$, which means that $z \in \text{range}(A)^{\perp}$. Consequently, $\text{null}(A^{\mathsf{T}}) \subseteq \text{range}(A)^{\perp}$.

Now pick any $z \in \text{range}(A)^{\perp}$. Then for any $x \in \mathbb{R}^n$, we have $\langle z, Ax \rangle = 0$, which is equivalent to $\langle A^{\mathsf{T}}z, x \rangle = 0$. This holds for all x, so we conclude that $A^{\mathsf{T}}z = 0$, so $z \in \text{null}(A^{\mathsf{T}})$. Consequently, $\text{range}(A)^{\perp} \subseteq \text{null}(A^{\mathsf{T}})$.

Lemma 1.2. Let $S \subseteq \mathbb{R}^n$ be a subspace. Then $S^{\perp \perp} = S$.

Proof. From the definition: $y \in S^{\perp}$ means that $\langle y, z \rangle = 0$ for all $z \in S$. Consequently, if $z \in S$, we must have $\langle y, z \rangle = 0$ for all $y \in S^{\perp}$. But this is precisely the definition of $z \in S^{\perp \perp}$. So we have $S \subseteq S^{\perp \perp}$. To prove the other inclusion, use the fact that we can decompose $\mathbb{R}^n = W \oplus W^{\perp}$ for any subspace W. Applying this to S and S^{\perp} , we conclude that $n = \dim(S) + \dim(S^{\perp}) = \dim(S^{\perp}) + \dim(S^{\perp})$. Therefore $\dim(S) = \dim(S^{\perp})$. Together with the fact that $S \subseteq S^{\perp \perp}$, we conclude that $S = S^{\perp \perp}$.

Lemma 1.3. Suppose $A \in \mathbb{R}^{m \times n}$. Then range $(A) = \text{range}(AA^{\mathsf{T}})$.

Proof. We previously proved that $\text{null}(A) = \text{null}(A^{\mathsf{T}}A)$. Taking the perp of both sides and applying Lemmas 1.1 and 1.2, we conclude that $\text{range}(A^{\mathsf{T}}) = \text{range}(A^{\mathsf{T}}A)$. Since A is an arbitrary matrix, we we can replace it by A^{T} and the result follows.

Applying Lemmas 1.1 and 1.2, our condition that $\hat{x} \in \text{null}(A)^{\perp}$ is equivalent to $\hat{x} \in \text{range}(A^{\mathsf{T}})$. In other words, we must have $\hat{x} = A^{\mathsf{T}}w$ for some $w \in \mathbb{R}^m$. But we also know that $A\hat{x} = b$, since \hat{x} must satisfy the linear equations. Substituting, we obtain:

$$AA^{\mathsf{T}}w = b$$

Therefore, our solution process is clear:

- 1. Solve the system $AA^{\mathsf{T}}w = b$.
- 2. The solution to the minimum norm problem is $\hat{x} = A^{\mathsf{T}} w$.

Some observations to make:

- What if $AA^{\mathsf{T}}w = b$ has no solution? In this case $b \notin \operatorname{range}(AA^{\mathsf{T}})$. From Lemma 1.3, this is equivalent to $b \notin \operatorname{range}(A)$, so there are no solutions to Ax = b at all (the optimization problem is infeasible).
- Can there be infinitely many solutions? For example, suppose we have w_1 and w_2 that both satisfy $AA^{\mathsf{T}}w = b$. Then, $AA^{\mathsf{T}}(w_1 w_2) = 0$, and so $w_1 w_2 \in \text{null}(AA^{\mathsf{T}})$. But $\text{null}(AA^{\mathsf{T}}) = \text{null}(A^{\mathsf{T}})$ (proved in Lecture 2, Lemma 1.3), so $A^{\mathsf{T}}(w_1 w_2) = 0$. Consequently, if we define $\hat{x}_1 = A^{\mathsf{T}}w_1$ and $\hat{x}_2 = A^{\mathsf{T}}w_2$, we find that:

$$\hat{x}_1 - \hat{x}_2 = A^{\mathsf{T}}(w_1 - w_2) = 0$$

So although $AA^{\mathsf{T}}w = b$ may have infinitely many solutions, they all lead to the same solution \hat{x} to the optimization problem.

Remark 1.4. We can use Lemma 1.3 to prove that the normal equations always have a solution. Clearly, we have $A^{\mathsf{T}}b \in \mathrm{range}(A^{\mathsf{T}})$, and from Lemma 1.3, we have $\mathrm{range}(A^{\mathsf{T}}) = \mathrm{range}(A^{\mathsf{T}}A)$. Therefore, $A^{\mathsf{T}}b \in \mathrm{range}(A^{\mathsf{T}}A)$, which means that the equation $A^{\mathsf{T}}Ax = A^{\mathsf{T}}b$ has a solution.

1.3 Calculus solution

Given a smooth function f, The vector ∇f points in the direction of greatest increase of f. Meanwhile, vectors orthogonal to ∇f point in directions of no change. This follows from Taylor's theorem in higher dimensions:

$$f(x + \delta x) \approx f(x) + \nabla f(x)^{\mathsf{T}} \delta x$$

So when $\langle \nabla f(x), \delta x \rangle = 0$ and δx is small, we have no change in f. Likewise, among all vectors δx of equal length, the largest increase is when δx is aligned with $\nabla f(x)$, so $\nabla f(x)$ points in the direction of greatest increase of f at the point x.

Theorem 1.5. Let $f: \mathbb{R}^n \to 0$ and $g_i: \mathbb{R}^n \to \mathbb{R}$ for i = 1, ..., m be smooth functions. If \hat{x} minimizes f(x) subject to the constraint $g_i(x) = 0$ for all i, then $\nabla f(\hat{x}) \in \text{span}(\nabla g_i(\hat{x}))$.

Proof. Suppose instead that $\nabla f(\hat{x}) \notin \text{span}(\nabla g_i(\hat{x}))$. In particular, $\nabla f(\hat{x}) \neq 0$. Therefore, we can pick a nonzero $\delta x \in \text{span}(\nabla g_i(\hat{x}))^{\perp}$ such that $\langle \delta x, \nabla f(\hat{x}) \rangle < 0$. With this choice, $\langle \delta x, \nabla g_i(\hat{x}) \rangle = 0$ for all i, so by Taylor's theorem, perturbing \hat{x} in the direction of δx will cause all g_i to remain constant but f will decrease, thereby contradicting the optimality of \hat{x} .

In our case, we want to minimize $f(x) = ||x||^2$ subject to the constraints (split A into its rows) $g_i(x) = \tilde{a}_i^{\mathsf{T}} x - b = 0$. The gradient of this constraint is \tilde{a}_i . So by Theorem 1.5, we must have:

$$\nabla f(\hat{x}) + \sum_{i=1}^{m} \lambda_i \nabla g_i(\hat{x}) = 0$$

for some choice of constants $\lambda_1, \ldots, \lambda_m$. These constants are called *Lagrange multipliers*. Substituting f and g_i into this equation, we obtain:

$$2\hat{x} + \sum_{i=1}^{m} \lambda_i \tilde{a}_i = 0$$

Assembling the λ_i into a column vector λ , we can write this succinctly as: $2\hat{x} + A^{\mathsf{T}}\lambda = 0$. This is equivalent to saying that $\hat{x} \in \text{range}(A^{\mathsf{T}})$; same as we found using geometry.

1.4 Full rank case

When we looked at solutions of Ax = b, we saw that when A has full row rank, then there exists a solution for any $b \in \mathbb{R}^m$, so there also exists a solution to the minimum-norm problem. We don't have to worry about uniqueness, since we showed that minimum-norm problems always have a unique solution.

Corollary 1.6. Suppose $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. If A has full row rank, then there exists a solution to the minimum norm problem: minimize ||x|| subject to Ax = b. The solution is also unique, and it is given by $\hat{x} = A^{\mathsf{T}}(AA^{\mathsf{T}})^{-1}b$.

Proof. If A has full row rank, then range(A) = \mathbb{R}^m , so the equation Ax = b has a solution for any b. By Lemma 1.3, range(AA^{T}) = range(A) = \mathbb{R}^m , so AA^{T} has full row rank as well. This matrix is square and full rank, so it is invertible. Therefore, the equations $AA^{\mathsf{T}}w = b$ and $\hat{x} = A^{\mathsf{T}}w$ have a unique solution, and it is given by $A^{\mathsf{T}}(AA^{\mathsf{T}})^{-1}b$.

When A has full row rank, the matrix $A^{\dagger} := A^{\mathsf{T}} (AA^{\mathsf{T}})^{-1}$ is (also) called the *pseudoinverse* of A. The pseudoinverse is defined for general A as well; we'll see the general definition later. In the full row rank case, we have the following properties:

- If $A \in \mathbb{R}^{m \times n}$, then $A^{\dagger} \in \mathbb{R}^{n \times m}$. So A^{\dagger} has the same shape as A^{T} .
- $AA^{\dagger} = I_m$. In other words, A^{\dagger} is a *right*-inverse of A.
- If A is square and full rank (invertible), then both notions of pseudoinverse coincide and we have $A^{\dagger} = (A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}} = A^{\mathsf{T}}(AA^{\mathsf{T}})^{-1} = A^{-1}$.

2 Transferring mass a unit distance

In the following example¹, we would like to transfer a mass (initially at rest) a distance of 1 unit in 10 seconds. We can apply a constant force every second. We want to find the least-norm sequence of forces that achieves this. Define the following variables:

- y_t and v_t : position and velocity at time t, respectively.
- x_t : constant force applied in the time interval [t, t+1].

¹This example is borrowed from: http://ee263.stanford.edu/lectures/min-norm.pdf

We will assume the dynamics are described by the following simple equations:

$$v_{t+1} - v_t = x_t$$
 (force equals change in velocity)
 $y_{t+1} - y_t = v_t$ (velocity equals change in position)

We also have the initial conditions $y_0 = 0$, $v_0 = 0$, because the mass is initially at rest. Our goal is to pick x_0, \ldots, x_9 so that $y_{10} = 1$ and $v_{10} = 0$, so after 10 seconds, the mass has moved a unit distance and is again at rest. We start by expressing v_{10} and y_{10} in terms of the x_t 's:

$$\begin{bmatrix} v_{10} \\ y_{10} \end{bmatrix} = \begin{bmatrix} v_0 \\ y_0 \end{bmatrix} + \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 9 & 8 & 7 & \cdots & 1 & 0 \end{bmatrix} \begin{bmatrix} x_0 \\ \vdots \\ x_9 \end{bmatrix}$$

Substituting the initial and terminal constraints, we have the equation:

$$Ax = b$$
, where: $b = \begin{bmatrix} v_{10} \\ y_{10} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $A = \begin{bmatrix} 1 & 1 & \cdots & 1 & 1 \\ 9 & 8 & \cdots & 1 & 0 \end{bmatrix}$.

So finding the minimum-norm input amounts to solving the minimum norm problem (1). Since A has full row rank, the solution is given by the pseudoinverse $\hat{x} = A^{\dagger}b = A^{\mathsf{T}}(AA^{\mathsf{T}})^{-1}b$. This is:

$$\hat{x} = \begin{bmatrix} 1 & 9 \\ 1 & 8 \\ \vdots & \vdots \\ 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 10 & 45 \\ 45 & 285 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{165} \begin{bmatrix} 9 \\ 7 \\ 5 \\ \vdots \\ -9 \end{bmatrix}.$$

The solution is plotted in Fig. 2 below.

The optimal input is an affine function of time. This is no accident; since our optimal solution belongs to range(A^{T}), and in this case A^{T} has columns that are linear (constant rate of change), this means \hat{x} will also have steadily changing components. The optimal input is an affine function of time regardless of the initial and terminal conditions!

Figure 2: Optimal input, position, and velocity for the minimum-norm mass transfer.