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1 Least norm optimization

Consider the equation Az = b with A € R™*", This time, imagine we have m < n (A is a wide
matrix), and we are in the control setup; there are infinitely many x satisfying Az = b, so we want
to find the “best” x among all solutions.

In the least norm problem, as the name suggests, we will seek the solution to Az = b for which ||z||

is as small as possible. In optimization notation, the problem is to
minimize ||z?

)

such that Ax =15

Here, Az = b is a constraint, and we write it beneath the objective function ||z||.

1.1 Geometric intuition

The set of all solutions to Az = b is the set X := {z, +v | v € null(A)}, where z, is any point
satisfying Az, = b. We can write this simply as X = x, + null(A). The set X is generally not a
subspace, because it does not include 0. Rather, it is an affine space; which is a shifted subspace.
Instead of passing through the origin, the set X passes through the point x,. We can visualize all
points in this space as in Fig. 1. Important note: when we drew a picture for least squares, we
visualized the output space R™, in which range(A) is a subspace. Here, we visualize, the input
space R™, in which null(A) is a subspace.

xp + null(A)

Figure 1: Geometric intuition for minimizing ||z| subject to Az = b: we are looking for
the point in & + null(A) that is closest to 0. This happens when # € null(A4)*.

In Fig. 1, we see that among all points in the solution set z, + null(A), there is a point Z that has
minimum norm, which means it is closest to the origin. This means that & should be orthogonal to
all vectors in null(A), so & € null(A4)L.



We can also prove the converse; that if we have any vector & € null(A)L, then it must be optimal.
To see why, let x be any other feasible point, i.e. a point that satisfies Az = b. Now write:

lz]? = ||z — & + 2|
=12 + llo — 2[|* + 2(&, 2 — 2)
= [|2[* + ll= — 2|

> ||z

In the third line, we used the fact that (&, z — &) = 0. This follows from the fact that = and & are
both solutions to Az = b. Therefore, we have: A(z —%) = Az — Az =b—b=0. Sox—2 € null(A).
By assumption, # € null(4)*, so (Z,r — 2) = 0. This proves that & is an optimal point if and only
if # € null(A)*.

1.2 Algebraic solution
To proceed further, we need two useful facts.

Lemma 1.1. Suppose A € R™*". Then range(A)* = null(AT).

Proof. Pick any z € null(A") and y € range(A). Then y = Az for some 2 € R”. Now calculate:
(z,y) = (z,Az) = (ATz,2) = 0. We just showed that (z,y) for all y € range(A), which means that
z € range(A)*. Consequently, null(AT) C range(A)*.

Now pick any z € range(A)*. Then for any 2 € R", we have (z, Ax) = 0, which is equivalent to
(ATz,2) = 0. This holds for all z, so we conclude that ATz = 0, so z € null(AT). Consequently,
range(A)*+ C null(AT). [

Lemma 1.2. Let S C R™ be a subspace. Then S++= 5.

Proof. From the definition: y € S+ means that (y,z) = 0 for all z € S. Consequently, if z € S,
we must have (y,z) = 0 for all y € S*. But this is precisely the definition of z € S+t. So we
have S C StL. To prove the other inclusion, use the fact that we can decompose R* = W @ W+
for any subspace W. Applying this to S and S+, we conclude that n = dim(S) + dim(S+) =
dim(S+) + dim(S++). Therefore dim(S) = dim(S*). Together with the fact that S C S+, we
conclude that § = S+t |

Lemma 1.3. Suppose A € R™*". Then range(A) = range(AAT).

Proof. We previously proved that null(A) = null(AT A). Taking the perp of both sides and applying
Lemmas 1.1 and 1.2, we conclude that range(AT) = range(ATA). Since A is an arbitrary matrix,
we we can replace it by AT and the result follows. |

Applying Lemmas 1.1 and 1.2, our condition that & € null(A)* is equivalent to & € range(AT"). In
other words, we must have & = ATw for some w € R™. But we also know that A% = b, since &
must satisfy the linear equations. Substituting, we obtain:

AATw =1



Therefore, our solution process is clear:

1. Solve the system AATw = b.

2. The solution to the minimum norm problem is & = ATw.
Some observations to make:

e What if AATw = b has no solution? In this case b ¢ range(AAT). From Lemma 1.3, this
is equivalent to b ¢ range(A), so there are no solutions to Az = b at all (the optimization
problem is infeasible).

e Can there be infinitely many solutions? For example, suppose we have w; and wo that
both satisfy AATw = b. Then, AAT(w; — wy) = 0, and so w; — wy € null(AAT). But
null(AAT) = null(AT) (proved in Lecture 2, Lemma 1.3), so AT (w; —ws) = 0. Consequently,
if we define #; = ATw; and &9 = ATws, we find that:

.’2'1 —i‘g :AT(w1 —wg) =0

So although AATw = b may have infinitely many solutions, they all lead to the same solution
Z to the optimization problem.

Remark 1.4. We can use Lemma 1.3 to prove that the normal equations always have a solution.
Clearly, we have ATb € range(AT), and from Lemma 1.3, we have range(AT) = range(ATA).
Therefore, ATb € range(AT A), which means that the equation AT Az = ATb has a solution.

1.3 Calculus solution

Given a smooth function f, The vector V f points in the direction of greatest increase of f. Mean-
while, vectors orthogonal to V f point in directions of no change. This follows from Taylor’s theorem
in higher dimensions:

f(z+6z) = f(x) + Vf(x) ox

So when (Vf(x),dz) = 0 and dx is small, we have no change in f. Likewise, among all vectors
dz of equal length, the largest increase is when dz is aligned with V f(x), so Vf(z) points in the
direction of greatest increase of f at the point x.

Theorem 1.5. Let f : R® — 0 and g; : R — R fori = 1,...,m be smooth functions. If &
minimizes f(x) subject to the constraint g;(x) = 0 for all i, then V f(&) € span(Vg;(z)).

Proof. Suppose instead that V f(2) ¢ span(Vg;(z)). In particular, V f(£) # 0. Therefore, we can
pick a nonzero §x € span(Vg;(#))* such that (6x, V(%)) < 0. With this choice, (0z, Vg;(2)) = 0
for all ¢, so by Taylor’s theorem, perturbing & in the direction of dz will cause all g; to remain
constant but f will decrease, thereby contradicting the optimality of z. |

In our case, we want to minimize f(z) = ||z||?> subject to the constraints (split A into its rows)

gi(z) = @]z — b= 0. The gradient of this constraint is @;. So by Theorem 1.5, we must have:

V@) + Z AiVgi(2) =0

=1



for some choice of constants Ai,..., ;. These constants are called Lagrange multipliers. Substi-
tuting f and g; into this equation, we obtain:

m
2i+ Y Nidi =0
i=1
Assembling the ); into a column vector \, we can write this succinctly as: 24 + ATX = 0. This is
equivalent to saying that & € range(A"); same as we found using geometry.

1.4 Full rank case

When we looked at solutions of Az = b, we saw that when A has full row rank, then there exists
a solution for any b € R™, so there also exists a solution to the minimum-norm problem. We
don’t have to worry about uniqueness, since we showed that minimum-norm problems always have
a unique solution.

Corollary 1.6. Suppose A € R™ "™ and b € R™. If A has full row rank, then there exists a solution
to the minimum norm problem: minimize ||z|| subject to Ax =b. The solution is also unique, and
it is given by & = AT(AAT)™1b.

Proof. If A has full row rank, then range(A) = R™, so the equation Az = b has a solution for any
b. By Lemma 1.3, range(AAT) = range(A) = R™, so AAT has full row rank as well. This matrix is
square and full rank, so it is invertible. Therefore, the equations AATw = b and & = ATw have a
unique solution, and it is given by AT(AAT)=1b. |

When A has full row rank, the matrix AT := AT(AAT)™! is (also) called the pseudoinverse of A.
The pseudoinverse is defined for general A as well; we’ll see the general definition later. In the full
row rank case, we have the following properties:

o If A € R™*™ then AT € R™™. So Al has the same shape as AT.
o AAT =1,,. In other words, A is a right-inverse of A.

e If A is square and full rank (invertible), then both notions of pseudoinverse coincide and we
have AT = (ATA)71AT = AT(AAT)"1 = A~L,

2 Transferring mass a unit distance

In the following example!, we would like to transfer a mass (initially at rest) a distance of 1 unit in
10 seconds. We can apply a constant force every second. We want to find the least-norm sequence
of forces that achieves this. Define the following variables:

e y; and v;: position ant velocity at time ¢, respectively.

e 1;: constant force applied in the time interval [¢,¢ + 1].

!This example is borrowed from: http://ee263.stanford.edu/lectures/min-norm.pdf


http://ee263.stanford.edu/lectures/min-norm.pdf

We will assume the dynamics are described by the following simple equations:

Vip1 — Uy = Ty (force equals change in velocity)

Yi+1 — Yt = U (velocity equals change in position)

We also have the initial conditions yy = 0, vg = 0, because the mass is initially at rest. Our goal

is to pick zg,...,x9 so that y19o = 1 and vig = 0, so after 10 seconds, the mass has moved a unit
distance and is again at rest. We start by expressing vi19 and yj¢ in terms of the z;’s:
o
U10_00+111~-'11,
ylo_yo 9 8 7 --- 10
9
Substituting the initial and terminal constraints, we have the equation:
V10 0 11 --- 1 1
Ax = here: = = A= .
x = b, where: b [ym] [J and [9 8 ... 10

So finding the minimum-norm input amounts to solving the minimum norm problem (1). Since A
has full row rank, the solution is given by the pseudoinverse & = ATh = AT(AAT)~1b. This is:

[1 97 97
1 8 1 7
. 10 45 1 i 5
Tl ] |45 285 0| 165 | .
1 1 :
|1 0] | —9]

The solution is plotted in Fig. 2 below.

The optimal input is an affine function of time. This is no accident; since our optimal solution
belongs to range(AT), and in this case AT has columns that are linear (constant rate of change),
this means & will also have steadily changing components. The optimal input is an affine function
of time regardless of the initial and terminal conditions!



Transferring mass using least norm optimization
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Figure 2: Optimal input, position, and velocity for the minimum-norm mass transfer.
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