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1 Least norm optimization

Consider the equation Ax = b with A ∈ Rm×n. This time, imagine we have m < n (A is a wide
matrix), and we are in the control setup; there are infinitely many x satisfying Ax = b, so we want
to find the “best” x among all solutions.

In the least norm problem, as the name suggests, we will seek the solution to Ax = b for which ∥x∥
is as small as possible. In optimization notation, the problem is to

minimize
x∈Rn

∥x∥2

such that Ax = b
(1)

Here, Ax = b is a constraint, and we write it beneath the objective function ∥x∥.

1.1 Geometric intuition

The set of all solutions to Ax = b is the set X := {xp + v | v ∈ null(A)}, where xp is any point
satisfying Axp = b. We can write this simply as X = xp + null(A). The set X is generally not a
subspace, because it does not include 0. Rather, it is an affine space; which is a shifted subspace.
Instead of passing through the origin, the set X passes through the point xp. We can visualize all
points in this space as in Fig. 1. Important note: when we drew a picture for least squares, we
visualized the output space Rm, in which range(A) is a subspace. Here, we visualize, the input
space Rn, in which null(A) is a subspace.

0

x̂

xp + null(A)

Figure 1: Geometric intuition for minimizing ∥x∥ subject to Ax = b: we are looking for
the point in x̂+ null(A) that is closest to 0. This happens when x̂ ∈ null(A)⊥.

In Fig. 1, we see that among all points in the solution set xp + null(A), there is a point x̂ that has
minimum norm, which means it is closest to the origin. This means that x̂ should be orthogonal to
all vectors in null(A), so x̂ ∈ null(A)⊥.
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We can also prove the converse; that if we have any vector x̂ ∈ null(A)⊥, then it must be optimal.
To see why, let x be any other feasible point, i.e. a point that satisfies Ax = b. Now write:

∥x∥2 = ∥x− x̂+ x̂∥2

= ∥x̂∥2 + ∥x− x̂∥2 + 2⟨x̂, x− x̂⟩
= ∥x̂∥2 + ∥x− x̂∥2

≥ ∥x̂∥2

In the third line, we used the fact that ⟨x̂, x− x̂⟩ = 0. This follows from the fact that x and x̂ are
both solutions to Ax = b. Therefore, we have: A(x− x̂) = Ax−Ax̂ = b− b = 0. So x− x̂ ∈ null(A).
By assumption, x̂ ∈ null(A)⊥, so ⟨x̂, x− x̂⟩ = 0. This proves that x̂ is an optimal point if and only
if x̂ ∈ null(A)⊥.

1.2 Algebraic solution

To proceed further, we need two useful facts.

Lemma 1.1. Suppose A ∈ Rm×n. Then range(A)⊥ = null(AT).

Proof. Pick any z ∈ null(AT) and y ∈ range(A). Then y = Ax for some x ∈ Rn. Now calculate:
⟨z, y⟩ = ⟨z,Ax⟩ = ⟨ATz, x⟩ = 0. We just showed that ⟨z, y⟩ for all y ∈ range(A), which means that
z ∈ range(A)⊥. Consequently, null(AT) ⊆ range(A)⊥.

Now pick any z ∈ range(A)⊥. Then for any x ∈ Rn, we have ⟨z,Ax⟩ = 0, which is equivalent to
⟨ATz, x⟩ = 0. This holds for all x, so we conclude that ATz = 0, so z ∈ null(AT). Consequently,
range(A)⊥ ⊆ null(AT). ■

Lemma 1.2. Let S ⊆ Rn be a subspace. Then S⊥⊥ = S.

Proof. From the definition: y ∈ S⊥ means that ⟨y, z⟩ = 0 for all z ∈ S. Consequently, if z ∈ S,
we must have ⟨y, z⟩ = 0 for all y ∈ S⊥. But this is precisely the definition of z ∈ S⊥⊥. So we
have S ⊆ S⊥⊥. To prove the other inclusion, use the fact that we can decompose Rn = W ⊕W⊥

for any subspace W . Applying this to S and S⊥, we conclude that n = dim(S) + dim(S⊥) =
dim(S⊥) + dim(S⊥⊥). Therefore dim(S) = dim(S⊥). Together with the fact that S ⊆ S⊥⊥, we
conclude that S = S⊥⊥. ■

Lemma 1.3. Suppose A ∈ Rm×n. Then range(A) = range(AAT).

Proof. We previously proved that null(A) = null(ATA). Taking the perp of both sides and applying
Lemmas 1.1 and 1.2, we conclude that range(AT) = range(ATA). Since A is an arbitrary matrix,
we we can replace it by AT and the result follows. ■

Applying Lemmas 1.1 and 1.2, our condition that x̂ ∈ null(A)⊥ is equivalent to x̂ ∈ range(AT). In
other words, we must have x̂ = ATw for some w ∈ Rm. But we also know that Ax̂ = b, since x̂
must satisfy the linear equations. Substituting, we obtain:

AATw = b
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Therefore, our solution process is clear:

1. Solve the system AATw = b.

2. The solution to the minimum norm problem is x̂ = ATw.

Some observations to make:

• What if AATw = b has no solution? In this case b /∈ range(AAT). From Lemma 1.3, this
is equivalent to b /∈ range(A), so there are no solutions to Ax = b at all (the optimization
problem is infeasible).

• Can there be infinitely many solutions? For example, suppose we have w1 and w2 that
both satisfy AATw = b. Then, AAT(w1 − w2) = 0, and so w1 − w2 ∈ null(AAT). But
null(AAT) = null(AT) (proved in Lecture 2, Lemma 1.3), so AT(w1 −w2) = 0. Consequently,
if we define x̂1 = ATw1 and x̂2 = ATw2, we find that:

x̂1 − x̂2 = AT(w1 − w2) = 0

So although AATw = b may have infinitely many solutions, they all lead to the same solution
x̂ to the optimization problem.

Remark 1.4. We can use Lemma 1.3 to prove that the normal equations always have a solution.
Clearly, we have ATb ∈ range(AT), and from Lemma 1.3, we have range(AT) = range(ATA).
Therefore, ATb ∈ range(ATA), which means that the equation ATAx = ATb has a solution.

1.3 Calculus solution

Given a smooth function f , The vector ∇f points in the direction of greatest increase of f . Mean-
while, vectors orthogonal to ∇f point in directions of no change. This follows from Taylor’s theorem
in higher dimensions:

f(x+ δx) ≈ f(x) +∇f(x)Tδx

So when ⟨∇f(x), δx⟩ = 0 and δx is small, we have no change in f . Likewise, among all vectors
δx of equal length, the largest increase is when δx is aligned with ∇f(x), so ∇f(x) points in the
direction of greatest increase of f at the point x.

Theorem 1.5. Let f : Rn → 0 and gi : Rn → R for i = 1, . . . ,m be smooth functions. If x̂
minimizes f(x) subject to the constraint gi(x) = 0 for all i, then ∇f(x̂) ∈ span(∇gi(x̂)).

Proof. Suppose instead that ∇f(x̂) /∈ span(∇gi(x̂)). In particular, ∇f(x̂) ̸= 0. Therefore, we can
pick a nonzero δx ∈ span(∇gi(x̂))

⊥ such that ⟨δx,∇f(x̂)⟩ < 0. With this choice, ⟨δx,∇gi(x̂)⟩ = 0
for all i, so by Taylor’s theorem, perturbing x̂ in the direction of δx will cause all gi to remain
constant but f will decrease, thereby contradicting the optimality of x̂. ■

In our case, we want to minimize f(x) = ∥x∥2 subject to the constraints (split A into its rows)
gi(x) = ãT

i x− b = 0. The gradient of this constraint is ãi. So by Theorem 1.5, we must have:

∇f(x̂) +
m∑
i=1

λi∇gi(x̂) = 0
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for some choice of constants λ1, . . . , λm. These constants are called Lagrange multipliers. Substi-
tuting f and gi into this equation, we obtain:

2x̂+
m∑
i=1

λiãi = 0

Assembling the λi into a column vector λ, we can write this succinctly as: 2x̂ + ATλ = 0. This is
equivalent to saying that x̂ ∈ range(AT); same as we found using geometry.

1.4 Full rank case

When we looked at solutions of Ax = b, we saw that when A has full row rank, then there exists
a solution for any b ∈ Rm, so there also exists a solution to the minimum-norm problem. We
don’t have to worry about uniqueness, since we showed that minimum-norm problems always have
a unique solution.

Corollary 1.6. Suppose A ∈ Rm×n and b ∈ Rm. If A has full row rank, then there exists a solution
to the minimum norm problem: minimize ∥x∥ subject to Ax = b. The solution is also unique, and
it is given by x̂ = AT(AAT)−1b.

Proof. If A has full row rank, then range(A) = Rm, so the equation Ax = b has a solution for any
b. By Lemma 1.3, range(AAT) = range(A) = Rm, so AAT has full row rank as well. This matrix is
square and full rank, so it is invertible. Therefore, the equations AATw = b and x̂ = ATw have a
unique solution, and it is given by AT(AAT)−1b. ■

When A has full row rank, the matrix A† := AT(AAT)−1 is (also) called the pseudoinverse of A.
The pseudoinverse is defined for general A as well; we’ll see the general definition later. In the full
row rank case, we have the following properties:

• If A ∈ Rm×n, then A† ∈ Rn×m. So A† has the same shape as AT.

• AA† = Im. In other words, A† is a right-inverse of A.

• If A is square and full rank (invertible), then both notions of pseudoinverse coincide and we
have A† = (ATA)−1AT = AT(AAT)−1 = A−1.

2 Transferring mass a unit distance

In the following example1, we would like to transfer a mass (initially at rest) a distance of 1 unit in
10 seconds. We can apply a constant force every second. We want to find the least-norm sequence
of forces that achieves this. Define the following variables:

• yt and vt: position ant velocity at time t, respectively.

• xt: constant force applied in the time interval [t, t+ 1].

1This example is borrowed from: http://ee263.stanford.edu/lectures/min-norm.pdf
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We will assume the dynamics are described by the following simple equations:

vt+1 − vt = xt (force equals change in velocity)
yt+1 − yt = vt (velocity equals change in position)

We also have the initial conditions y0 = 0, v0 = 0, because the mass is initially at rest. Our goal
is to pick x0, . . . , x9 so that y10 = 1 and v10 = 0, so after 10 seconds, the mass has moved a unit
distance and is again at rest. We start by expressing v10 and y10 in terms of the xt’s:

[
v10
y10

]
=

[
v0
y0

]
+

[
1 1 1 · · · 1 1
9 8 7 · · · 1 0

]x0...
x9


Substituting the initial and terminal constraints, we have the equation:

Ax = b, where: b =

[
v10
y10

]
=

[
0
1

]
and A =

[
1 1 · · · 1 1
9 8 · · · 1 0

]
.

So finding the minimum-norm input amounts to solving the minimum norm problem (1). Since A
has full row rank, the solution is given by the pseudoinverse x̂ = A†b = AT(AAT)−1b. This is:

x̂ =


1 9
1 8
...

...
1 1
1 0


[
10 45
45 285

]−1 [
1
0

]
=

1

165


9
7
5
...
−9

 .

The solution is plotted in Fig. 2 below.

The optimal input is an affine function of time. This is no accident; since our optimal solution
belongs to range(AT), and in this case AT has columns that are linear (constant rate of change),
this means x̂ will also have steadily changing components. The optimal input is an affine function
of time regardless of the initial and terminal conditions!
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Figure 2: Optimal input, position, and velocity for the minimum-norm mass transfer.
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